#### Class Date

b

а

С

 $\frac{b}{a}$ 

#### Reteaching \_\_\_\_ 14-Right Triangles and Trigonometric Ratios

In the right triangle,  $\angle A$  is acute.



$$\tan A = \frac{\text{length of leg opposite } \angle A}{\text{length of leg adjacent to } \angle A} = \frac{a}{b} \qquad \cot A = \frac{1}{\tan A} = \frac{\text{length of leg adjacent to } \angle A}{\text{length of leg opposite } \angle A} = \frac{a}{b}$$

In  $\triangle ABC$ ,  $\angle C$  is a right angle and  $\cos A = \frac{20}{29}$ . What is the value of  $\sin A$ ,  $\cot A$ , and sin *B* in fraction and decimal form?

Draw a right triangle with acute angle B such that the Step 1 leg opposite *B* has length 20 and the hypotenuse has length 29. Find the length of the other leg using the Pythagorean theorem:  $a = \sqrt{29^2 - 20^2} = 21$ .



**Step 2** Use the ratios above to find the values of  $\sin A$ ,  $\cot A$ , and sin B.

$$\sin A = \frac{\text{length of leg opposite } \angle A}{\text{length of hypotenuse}} = \frac{21}{29} \approx 0.7241$$
$$\cot A = \frac{\text{length of leg adjacent to } \angle A}{\text{length of leg opposite } \angle A} = \frac{20}{21} \approx 0.9524$$
$$\sin B = \frac{\text{length of leg opposite } \angle B}{\text{length of hypotenuse}} = \frac{20}{29} \approx 0.6897$$

#### **Exercises**

**1.** In 
$$\Delta HJK$$
,  $\angle K$  is a right angle and  $\sin H = \frac{4}{7}$ . Find  $\cos H$ ,  $\csc H$ ,  $\tan J$ , and  $\sec J$ .

a

# Reteaching (continued) 14 - 3Right Triangles and Trigonometric Ratios

To apply a trigonometric formula correctly, label the triangle's adjacent leg, opposite leg, and hypotenuse first. Follow these steps:

- Step 1 Place an index finger on the right angle. Place your other index finger on the side opposite the right angle. Label it the hypotenuse.
- Place an index finger on the given angle. Place your other index finger on the Step 2 leg touching the given angle. Label it *adjacent*.
- Step 3 Keep the index finger on the given angle. Place your other index finger on the leg opposite the given angle. Label it opposite.

### Problem

In right  $\triangle ABC$ ,  $m \angle A = 42^{\circ}$  and c = 28. What are the lengths of a and b? Round to the nearest tenth.

| $\sin\theta = \frac{\text{opp}}{\text{hyp}}$     | To find <i>a</i> , the opposite leg, use sine.   |                      |
|--------------------------------------------------|--------------------------------------------------|----------------------|
| $\sin 42^\circ = \frac{a}{28}$                   | Substitute values.                               | c=28                 |
| $28(\sin 42^\circ) = a$                          | Multiply each side by 28.                        |                      |
| 28(0.6691) = a                                   | Use a calculator.                                | $A \frac{42^{4}}{b}$ |
| 18.7 = a                                         | Label a = 18.7 on the triangle.                  |                      |
| $\cos\theta = \frac{\mathrm{adj}}{\mathrm{hyp}}$ | To find <i>b</i> , the adjacent leg, use cosine. |                      |
| $\cos 42^\circ = \frac{b}{28}$                   | Substitute values.                               |                      |
| $28(\cos 42^\circ) = b$                          | Multiply each side by 28.                        |                      |
| 28(0.7431) = b                                   | Use a calculator.                                |                      |
| 20.8 = b                                         | Label $b = 20.8$ on the triangle.                |                      |

## **Exercises**

In  $\triangle ABC$ ,  $\angle C$  is a right angle. Two measures are given. Find the remaining sides and angles to the nearest tenth.

| <b>2.</b> $m \angle B = 20^{\circ}, a = 6$ | <b>3.</b> $m \angle B = 60^{\circ}, c = 14$ | <b>4.</b> $m \angle A = 10^{\circ}, a = 10$     |  |
|--------------------------------------------|---------------------------------------------|-------------------------------------------------|--|
|                                            |                                             |                                                 |  |
| <b>5.</b> <i>b</i> = 7, <i>c</i> = 10      | <b>6.</b> <i>a</i> = 35, <i>b</i> = 21      | <b>7.</b> $m \angle A = 36.5^{\circ}, c = 28.2$ |  |