\qquad
\qquad Date \qquad

Reteaching

14-3

Right Triangles and Trigonometric Ratios

In the right triangle, $\angle A$ is acute.

The trigonometric ratios are:
$\sin A=\frac{\text { length of leg opposite } \angle A}{\text { length of hypotenuse }}=\frac{a}{c}$
$\csc A=\frac{1}{\sin A}=\frac{\text { length of hypotenuse }}{\text { length of leg opposite } \angle A}=\frac{c}{a}$
$\cos A=\frac{\text { length of leg adjacent to } \angle A}{\text { length of hypotenuse }}=\frac{b}{c}$
$\sec A=\frac{1}{\cos A}=\frac{\text { length of hypotenuse }}{\text { length of leg adjacent to } \angle A}=\frac{c}{b}$
$\tan A=\frac{\text { length of leg opposite } \angle A}{\text { length of leg adjacent to } \angle A}=\frac{a}{b} \quad \cot A=\frac{1}{\tan A}=\frac{\text { length of leg adjacent to } \angle A}{\text { length of leg opposite } \angle A}=\frac{b}{a}$

Problem

In $\triangle A B C, \angle C$ is a right angle and $\cos A=\frac{20}{29}$. What is the value of $\sin A, \cot A$, and $\sin B$ in fraction and decimal form?
Step 1 Draw a right triangle with acute angle B such that the leg opposite B has length 20 and the hypotenuse has length 29 . Find the length of the other leg using the Pythagorean theorem: $a=\sqrt{29^{2}-20^{2}}=21$.
Step 2 Use the ratios above to find the values of $\sin A, \cot A$,
 and $\sin B$.
$\sin A=\frac{\text { length of leg opposite } \angle A}{\text { length of hypotenuse }}=\frac{21}{29} \approx 0.7241$
$\cot A=\frac{\text { length of leg adjacent to } \angle A}{\text { length of leg opposite } \angle A}=\frac{20}{21} \approx 0.9524$
$\sin B=\frac{\text { length of leg opposite } \angle B}{\text { length of hypotenuse }}=\frac{20}{29} \approx 0.6897$

Exercises

1. In $\Delta H J K, \angle K$ is a right angle and $\sin H=\frac{4}{7}$. Find $\cos H, \csc H$, $\tan J$, and $\sec J$.
\qquad Class \qquad Date \qquad

14-3
 Reteaching (continued)
 Right Triangles and Trigonometric Ratios

To apply a trigonometric formula correctly, label the triangle's adjacent leg, opposite leg, and hypotenuse first. Follow these steps:

Step 1 Place an index finger on the right angle. Place your other index finger on the side opposite the right angle. Label it the hypotenuse.

Step 2 Place an index finger on the given angle. Place your other index finger on the leg touching the given angle. Label it adjacent.

Step 3 Keep the index finger on the given angle. Place your other index finger on the leg opposite the given angle. Label it opposite.

Problem

In right $\triangle A B C, m \angle A=42^{\circ}$ and $c=28$. What are the lengths of a and b ? Round to the nearest tenth.

$$
\begin{aligned}
\sin \theta & =\frac{\text { opp }}{\text { hyp }} & & \text { To find } a, \text { the opposite leg, use sine. } \\
\sin 42^{\circ} & =\frac{a}{28} & & \text { Substitute values. } \\
28\left(\sin 42^{\circ}\right) & =a & & \text { Multiply each side by } 28 . \\
28(0.6691) & =a & & \text { Use a calculator. } \\
18.7 & =a & & \text { Label } a=18.7 \text { on the triangle. } \\
\cos \theta & =\frac{\text { adj }}{\text { hyp }} & & \text { To find } b, \text { the adjacent leg, use cosine. } \\
\cos 42^{\circ} & =\frac{\mathrm{b}}{28} & & \text { Substitute values. } \\
28\left(\cos 42^{\circ}\right) & =b & & \text { Multiply each side by } 28 . \\
28(0.7431) & =b & & \text { Use a calculator. } \\
20.8 & =b & & \text { Label } b=20.8 \text { on the triangle. }
\end{aligned}
$$

Exercises

In $\triangle A B C, \angle C$ is a right angle. Two measures are given. Find the remaining sides and angles to the nearest tenth.
2. $m \angle B=20^{\circ}, a=6$
3. $m \angle B=60^{\circ}, c=14$
4. $m \angle A=10^{\circ}, a=10$
5. $b=7, c=10$
6. $a=35, b=21$
7. $m \angle A=36.5^{\circ}, c=28.2$

