5-4
 Reteaching (continued)
 Dividing Polynomials - Synthetic Divison

Problem

Use synthetic division to divide $x^{3}+13 x^{2}+46 x+48$ by $x+3$. What is the quotient and remainder?

Step 1 Set up your polynomial division.

$$
\left(x^{3}+13 x^{2}+46 x+48\right) \div(x+3)
$$

Step 2 Reverse the sign of the constant, 3 , in the divisor. Write the coefficients of the dividend: 1134648 . \qquad

Step 3 Bring the first coefficient, 1, down to the bottom line.

-3	1	13	46	48

Step 4 Multiply the coefficient, 1 , by the divisor, -3 . Put this product, -3 , underneath the second coefficient 13 , and add those two numbers: $13+(-3)=10$.

Step 5 Continue multiplying and adding through the last coefficient. The final sum is the remainder.

-3	1	13	46	48
		-3	-30	-48
	1	10	16	0

The quotient is $x^{2}+10 x+16$. Since the remainder is $0, x+3$ is a factor of $x^{3}+$ $13 x^{2}+46 x+48$.

Exercises

What is the quotient and remainder of the following polynomials?
11. $\left(x^{3}-2 x+8\right) \div(x+2)$
12. $\left(12 x^{3}-71 x^{2}+57 x-10\right) \div(x-5)$
13. $\left(3 x^{4}+x^{3}-6 x^{2}-9 x+12\right) \div(x+1)$
14. $\left(2 x^{3}-15 x+23\right) \div(x-2)$
15. $\left(x^{3}+x+10\right) \div(x+2)$
16. $\left(x^{4}-12 x^{3}-18 x^{2}+10\right) \div(x+4)$

